N8—07—C2	113.3 (1)	N8-C9-C10	114.5 (2)
07—N8—C9	109.3 (2)	N8-C9-C16	124.9 (2)
07—C2—N1	122.5 (2)	C9-C10-C11	120.9 (2)

Data collection: CAD-4 diffractometer control software (Enraf–Nonius, 1989). Cell refinement: CAD-4 diffractometer control software. Data reduction: *TEXSAN PROCESS* (Molecular Structure Corporation, 1985). Program(s) used to solve structure: *SHELXS86* (Sheldrick, 1985). Program(s) used to refine structure: *TEXSAN LS*. Software used to prepare material for publication: *TEXSAN FINISH*. Literature survey: *CSSR* (1984).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry, including bond distances and angles involving H atoms, have been deposited with the IUCr (Reference: LI1120). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Banks, R. E., Jondi, W. J. & Tipping, A. E. (1989). J. Chem. Soc. Chem. Commun. pp. 1268-1269.
- CSSR (1984). Crystal Structure Search and Retrieval Instruction Manual. SERC Daresbury Laboratory, Warrington, England.
- Enraf-Nonius (1989). CAD-4 Reference Manual. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Jondi, W. J. (1989). PhD thesis, Univ. of Manchester, England.
- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Motherwell, W. D. S. & Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger & R. Goddard, pp. 175–189. Oxford Univ. Press.
- Zachariasen, W. H. (1967). Acta Cryst., A46, C-34.

Acta Cryst. (1995). C51, 295-298

2'-Carbamate Taxol

QI GAO AND JERZY GOLIK

Pharmaceutical Research Institute, Bristol-Myers Squibb Company, Wallingford, Connecticut 06492, USA

(Received 9 December 1993; accepted 17 May 1994)

Abstract

Comparison of the conformation of 2'-carbamate taxol, $\{2aR-[2a\alpha,4\beta,4a\beta,6\beta,9\alpha,(\alpha R^*,\beta S^*),11\alpha,12\alpha,12a\alpha,12b\alpha]\}$ -6,12b-bis(acetyloxy)-12-(benzoyl-oxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-

methano-1*H*-cyclodeca[3,4]benzo[1,2-*b*]oxet-9-yl β -(benzoylamino)- α -(carbamoyloxy)benzenepropanoate, C₄₈H₅₂N₂O₁₅, with the known X-ray structures of taxotere and methyl (2*R*,3*S*)-*N*-benzoyl-3-phenylisoserinate reveals that the most pronounced differences are in the conformation of the C13 sidechain fragment. The carbamate N atom forms two intermolecular hydrogen bonds with the taxol core and stabilizes the crystal.

Comment

Taxol, (1), a naturally occurring diterpene isolated from the bark of *Taxus brevifolia* (Wani, Taylor, Wall, Coggon & McPhail, 1971), is considered the most exciting lead in the chemotherapy of several malignant solid tumors (Rowinsky & Donehower, 1991). For more than 20 years, attempts to determine the crystal structure for the whole molecule have not been successful due to difficulties in obtaining crystals suitable for X-ray diffraction experiments. To date, detailed structural information on taxol has been restricted to a crystallographic study of taxotere, a semi-synthetic taxol analog with a modified side chain at the 13*R* position (Gueritte-Voegelein, Guénard, Mangatal, Potier, Guilhem, Cesario & Pascard, 1990).

In the course of our SAR program on taxol analogs, we synthesized 2'-carbamate taxol (2) which is, to our knowledge, the simplest crystalline taxol derivative containing both the oxetane ring and the complete taxol-type side chain, and investigated its structure by single-crystal analysis. It was synthesized in two steps, acylation of taxol at the 2' position with chloromethyl chloroformate, followed by treatment of the 2'-chloromethyl carbonate intermediate with ammonia in acetone at room temperature.

The conformation of the tetracyclic ring system in 2'-carbamate taxol is essentially indentical to that of taxotere. The slight differences in the conformations of the benzoyl group at C2 and the acetyl group at C4 were also observed in the crystal structures of other taxanes (Appendino *et al.*, 1992; Gunawardana *et al.*, 1992). However, the side chain at C13 possesses a different conformation from that of taxotere. The *N*-benzoyl group at the 3' position is rotated approximately 90° away from the corresponding position of the *tert*-butyl group of taxotere. The

torsion angles about O13-Cl', Cl'-C2' and C3'-N4' seem to be responsible for the orientation of the side chain relative to the taxol core. In particular, the torsion angle O13-C1'-C2'-C3' is 85.6(4)in 2'-carbamate taxol but 60.2° in taxotere, and C2'-C3'-N4'-C5' is -100.1 (4) in 2'-carbamate taxol but -141.3° in taxotere. The change in orientation moves the O5' atom of 2'-carbamate taxol 4.03 Å away from the position of O5' in taxotere and the end of the side chain now points away from both the benzoyl group at C2 and the acetyl group at C4; these groups and their interactions with the side chain are believed to be crucial for the biological activity of taxol (Gueritte-Voegelein et al., 1991; Dubois et al., 1993). The distance between O5' and the methyl C atom of the acetyl group at C4 becomes 5.814 Å compared with a corresponding distance of 3.590 Å in taxotere. These notable changes in the side-chain conformation may explain the loss of activity for 2'-carbamate taxol and leads to the suggested importance of O5' in receptor binding. On the other hand, the overall three-dimensional structure of the side chain in 2'-carbamate taxol is similar to that of methyl (2R,3S)-N-benzoyl-3phenylisoserinate, a taxol-side-chain methyl ester (Peterson, Do & Rogers, 1991). Thus, it seems more sensible to study the conformation of the side chain only when it is coupled to the taxol core.

Dubois *et al.* (1993) showed that the specific orientation of the side chain in taxotere is due mainly to the presence of two intramolecular hydrogen bonds, $2'O-H\cdots 1'C=O$ and $3'N-H\cdots 2'O$. These two hydrogen bonds no longer exist in (2). The carbamate group points away from the core and the side chain and is not involved in the formation of intramolecular hydrogen bonds. However, it does

Fig. 1. ORTEPII (Johnson, 1976) drawing of 2'-carbamate taxol showing the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

form two intermolecular hydrogen bonds which contribute significantly to the stability of the crystal lattice. As shown in Fig. 2 and Table 2, N2' forms one hydrogen bond with O1 through one of its H atoms and a second, weaker, hydrogen bond with O9 through its other H atom. N4' is involved, as donor, in a hydrogen bond with O21 of the benzoate group which is bonded to atom C2 of the core. It was noticed that the interatomic distance $O7 \cdots O5'(x, y)$, z-1) is 3.404 Å with the angle O7-H···O5' at 121.1°. The hydrogen bonds between the side chain and core are dominant and only one intermolecular hydrogen bond (O1-H···O7) was observed between core atoms. There is also an intramolecular hydrogen bond, O7-H. O101, between core atoms in this structure.

Fig. 2. Stereoscopic view (Motherwell & Clegg, 1978) of the hydrogen-bond scheme in the crystal lattice of 2'-carbamate taxol.

Experimental

Recrystallization from methylene chloride gave chunky plates of m.p. 527-529 K.

Crystal data

 $\theta/2\theta$ scans

0.999

empirical

Absorption correction:

 $T_{\min} = 0.962, T_{\max} =$

4790 measured reflections

4790 independent reflections

$C_{48}H_{52}N_2O_{15}$	Cu $K\alpha$ radiation
$M_r = 896.943$	$\lambda = 1.5418 \text{ Å}$
Orthorhombic	Cell parameters from 25
P21212	reflections
a = 19.874 (1) Å	$\theta = 13.73 - 35.48^{\circ}$
b = 23.935 (2) Å	$\mu = 0.78 \text{ mm}^{-1}$
c = 9.496 (1) Å	T = 290 K
V = 4517.1 (5) Å ³	Fragment cut from a large
Z = 4	thick plate
$D_x = 1.319 \text{ Mg m}^{-3}$	$0.36 \times 0.27 \times 0.25 \text{ mm}$
C	Colorless
Data collection	
Enraf–Nonius CAD-4	4104 observed reflections
diffractometer	$[l > 3\sigma(l)]$
	C ₄₈ H ₅₂ N ₂ O ₁₅ $M_r = 896.943$ Orthorhombic $P2_12_12$ a = 19.874 (1) Å b = 23.935 (2) Å c = 9.496 (1) Å V = 4517.1 (5) Å ³ Z = 4 $D_x = 1.319$ Mg m ⁻³ Data collection Enraf-Nonius CAD-4 diffractometer

4104 observed reflection $[l \ge 3\sigma(l)]$ $\theta_{max} = 70^{\circ}$ $h = -24 \rightarrow 0$ $k = -29 \rightarrow 0$ $l = 0 \rightarrow 11$ 3 standard reflections frequency: 120 min intensity decay: 17%

Unit weights applied	C52' C53'	0.8399 (3)	1.2836 (2)	1.3891 (5)	6.2 (1)
Unit weights applied	CJJ		1 3000 (2)	1 4573 (6)	83(2)
$(\Delta/\sigma)_{max} = 0.08$ $\Delta\rho_{max} = 0.175 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.055 \text{ e } \text{\AA}^{-3}$ Extinction correction: none	C54' C55' C56' C101 C102	0.9964 (3) 0.9565 (3) 0.9610 (3) 0.9025 (3) 0.9280 (2) 1.0017 (2)	1.3009 (2) 1.2732 (2) 1.2335 (2) 1.2151 (2) 1.0698 (2) 1.0760 (2)	1.4373 (6) 1.4284 (8) 1.3287 (8) 1.2626 (6) 0.3494 (4) 0.3228 (5)	9.4 (2) 9.6 (2) 6.6 (1) 3.92 (8) 5.5 (1)
Atomic scattering factors from <i>MolEN</i> (Fair, 1990)	Ta	ble 2. Selec	ted geometri	c parameters ((Å, °)
	01C1 01'C1'		1.424 (4) N4 1.196 (5) N4 1.452 (4) C1	'C3' 'C5' 'C2'	1.450 (5) 1.366 (5) 1.521 (6)
coordinates and equivalent nt parameters (Ų)	02C21 02'C2' 02'C2'		1.452 (4) C1 1.358 (4) C1 1.424 (4) C1 1.360 (5) C1	C2 C14 C15	1.567 (5) 1.557 (5) 1.564 (5)
	for worgan support $(\Delta/\sigma)_{max} = 0.08$ $\Delta\rho_{max} = 0.175 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.055 \text{ e } \text{\AA}^{-3}$ Extinction correction: none Atomic scattering factors from <i>MolEN</i> (Fair, 1990) <i>Proordinates and equivalent</i> <i>at parameters</i> (Å ²)	$\begin{aligned} & (\Delta/\sigma)_{max} = 0.08 & C55' \\ & \Delta\rho_{max} = 0.175 \text{ e } \text{\AA}^{-3} & C56' \\ & \Delta\rho_{min} = -0.055 \text{ e } \text{\AA}^{-3} & C101 \\ & C102 & C102 \\ &$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{ccccccc} & & & & & & & & & & & & & & & &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

					01-01	1.190 (5)	114	1.500(5)
					O2C2	1.452 (4)	C1'C2'	1.521 (6)
Table	1. Fractional	atomic coor	dinates and	equivalent	O2C21	1.358 (4)	C1C2	1.567 (5)
		•		2	O_2' C_2'	1 424 (4)	C1C14	1 557 (5)
	isotropic di	splacement po	arameters (A	(²)	02 - 02'	1.727 (7)		1.557 (5)
	•	• •			$02^{-}-02^{-}$	1.300(5)		1.304 (3)
	R -	$(8\pi^2/3)\sum \sum II_{ij}$	a* a* a: a:		02''C2''	1.195 (5)	$C2^{-}-C3^{-}$	1.553 (6)
	Deq -	(0///5)2(2)00	<i>a_i a_j a</i> _l .a _j .		O4—C4	1.455 (5)	C2—C3	1.565 (5)
	*	v	7	B	04C41	1.359 (5)	C3C4	1.547 (5)
~			0 0777 (3)	2 OA (5)	05 C5	1 467 (6)	C3C8	1 564 (5)
01	0.7889(1)	0.9831(1)	0.9777(3)	3.94 (5)	05-030	1.407 (0)	C_{2}^{\prime}	1.507 (5)
01'	0.7941 (2)	1.2386(1)	0.8925 (4)	5.19 (8)	05	1.427 (6)	C3 C31	1.525(0)
02	0.6747(1)	0.96641 (9)	0.8457 (3)	3.23 (5)	O5'C5'	1.232 (5)	C4C5	1.542(6)
02'	0.6876 (1)	1 31172 (0)	0.9427 (3)	4 04 (6)	07C7	1.440 (5)	C4C20	1.534 (6)
02	0.0070(1)	1.31172 ())	0.7205 (4)	9.4.(1)	09	1,212 (4)	C5-C6	1.528(6)
02	0.6391 (2)	1.3094 (1)	0.7295 (4)	0.4 (1)		1 443 (4)	C5' C51'	1 404 (6)
O4	0.5959(1)	1.0482 (1)	0.7083 (3)	4.06 (6)		1.445 (4)	CJ —CJ	1.494(0)
05	0.5686(1)	0.9555(1)	0.4752 (4)	6.00 (8)	O10-C101	1.350 (5)	0-07	1.520(0)
05'	0 7697 (2)	1 1675 (1)	1 2057 (4)	6.08 (8)	013—C1′	1.347 (4)	C7—C8	1.585 (6)
07	0.7407(2)	1.0260 (2)	0 2287 (3)	6 41 (8)	O13C13	1.458 (4)	C8—C9	1.547 (5)
0/	0.7497(2)	1.0209 (2)	0.2387 (3)	0.41 (6)	021 C21	1 202 (4)	C8_C18	1 546 (6)
09	0.8522(1)	0.9692(1)	0.4231 (3)	4.18 (6)		1.202 (4)	C0 C10	1.574 (5)
010	0.9144 (1)	1.0634 (1)	0.4877 (3)	3.41 (5)	041C41	1.200 (0)	09-010	1.524 (5)
013	0.7192(1)	1.16848 (9)	0.8679 (3)	3.43 (5)	O101—C101	1.199 (5)	C10C11	1.503 (5)
011	0.7125(1)	0.8770(1)	0 8441 (3)	4 66 (6)	N2'-C2''	1.303 (5)	C11C12	1.345 (5)
021	0.7135(1)	0.8779(1)	0.6441(3)	4.00(0)	CUC15	1 535 (5)	C12C13	1.515(5)
041	0.6187(2)	1.1205(1)	0.5642 (4)	0.9(1)		1 408 (5)	C13 - C14	1 524 (5)
O101	0.8851(1)	1.0708 (1)	0.2605 (3)	5.21 (8)	C12C19	1.490 (3)		1.524 (5)
N2'	0.6640(2)	1.3902(1)	0.8360 (4)	4.92 (9)	C15C16	1.559 (6)	CI5CI7	1.548 (5)
N/	07332(2)	1 2568 (1)	1 1870 (4)	4 21 (7)	C41—C42	1.490 (8)	C21—C22	1.481 (5)
	0.7332 (2)	1.2300 (1)	0.0004(4)	2 95 (9)	C101—C102	1,495 (6)		
CI	0.7378(2)	1.2210(1)	0.9004 (4)	5.65 (6)				
C1	0.7772 (2)	1.0187(1)	0.8601 (3)	2.91 (6)	C2-02C21	116.4 (3)	$02^{\prime} - C2^{\prime\prime} - 02^{\prime\prime}$	122.6 (4)
C2′	0.6775 (2)	1.2531(1)	0.9566 (4)	3.74 (8)	C2'_O2'_C2''	116.2 (3)	02'C2''-N2'	110.2 (3)
C2	0.7311(2)	0.9839(1)	0.7590 (4)	2.87 (6)	C4-04-C41	117.2 (3)	02''-C2''-N2'	127.2 (4)
C2''	0.6613 (2)	1 3359 (2)	0 8254 (4)	4 32 (9)	$C_{5} = 0.5 - C_{20}$	915(3)	C2-C3-C4	1136(3)
C2	0.0015(2)	1.0107 (1)	0.6207 (4)	2.83 (6)	CJC101	1140(3)		114.2 (2)
CS	0.7033(2)	1.0127(1)	0.0227(4)	2.85 (0)		114.9 (3)	(2-(3-(8	114.2 (3)
C3'	0.6708 (2)	1.2419(1)	1.11/1 (4)	4.07(8)	C1'_013_C13	116.5 (3)	C4_C3_C8	111.0 (3)
C4	0.6261 (2)	1.0096 (2)	0.6081 (4)	3.55 (8)	C3'—N4'—C5'	122.3 (3)	N4'-C3'-C2'	109.5 (3)
C5	0.5942(2)	1.0127 (2)	0.4603 (5)	5.4 (1)	01' - C1' - 013	124.8 (4)	N4'-C3'-C31'	110.7 (3)
C5'	0 7799 (2)	1 2177 (2)	1 2248 (4)	4 53 (9)	01' - C1' - C2'	125.6 (3)	C2'-C3'-C31'	112 5 (3)
C5	0.7795 (2)	1.0211 (2)	0.2204 (5)	67(1)	01 - 01 - 02'	100.5 (2)	$C_2 C_3 C_3$	108 7 (3)
Co	0.0385(2)	1.0211 (3)	0.3304 (3)	0.7(1)	013 - c1 - c2	109.5 (5)	04-04-03	108.7 (3)
C7	0.7116 (2)	1.0345 (2)	0.3662 (4)	4.9(1)	01C1C2	104.9 (2)	04C4C5	113.3 (3)
C8	0.7389(2)	0.9934 (2)	0.4838 (4)	3.38 (7)	01C1C14	110.2 (3)	04C4C20	108.6 (3)
C9	0.8157(2)	1.0035 (2)	0.4777 (4)	3.13 (7)	01	107.8 (3)	C3C4C5	119.2 (3)
	0.8437(2)	1.0601 (1)	0 5221 (4)	2 96 (7)	$C_{2} - C_{1} - C_{14}$	111 3 (3)	C_{3} $-C_{4}$ $-C_{20}$	120 5 (3)
	0.0407(2)	1.0001(1)	0.5221(4)	2.70 (7)	62	111.4 (2)	C5 C4 C20	847(3)
CH	0.8321(2)	1.0744 (1)	0.0743(3)	2.87 (0)	(2-(1-(13)))	111.4 (3)	03-04-020	04.7 (3)
C12	0.7992 (2)	1.1219(1)	0.7058 (4)	3.03 (7)	C14—C1—C15	111.1 (3)	05-05-04	90.5 (3)
C13	0.7731 (2)	1.1275(1)	0.8551 (4)	3.26 (7)	02'C2'C1'	110.7 (3)	O5C5C6	113.6 (4)
C14	0.7417(2)	1.0734(1)	0.9086 (4)	3.34 (7)	02' - C2' - C3'	105.9 (3)	C4C5C6	120.3 (3)
CIS	0.8468 (2)	1.0317(1)	0 7908 (4)	3 17 (7)	C1' - C2' - C3'	109.0 (3)	05'-C5'-N4'	121.1 (4)
	0.8408 (2)	1.05(7(1)	0.7700(4)	4.62 (0)		10/.0 (3)	05' C5' C51'	123 7 (4)
C10	0.8903 (2)	1.0303(2)	0.9017(3)	4.03 (9)	02	104.7 (3)	NA' = CS' = CS1'	115 2 (2)
C17	0.8822(2)	0.9771(2)	0.7441 (4)	3.95 (8)	02 - C2 - C3	109.0 (3)	N4 C3 C31	115.2 (5)
C18	0.7272 (2)	0.9310 (2)	0.4499 (5)	5.15 (9)	C1C2C3	118.5 (3)	C5C6C7	113.3 (3)
C19	0.7847(2)	1.1689 (2)	0.6061 (4)	4.53 (9)	07C7C6	106.7 (3)	013—C13—C14	104.0 (3)
C20	0 5895 (2)	0.9533 (2)	0.6188 (5)	46(1)	07-67-68	109.5 (3)	C12C13C14	112.2 (3)
C20	0.5075(2)	0.0100(2)	0.0100 (3)	2 35 (7)	C6 C7 C8	1107(4)	C1_C14_C13	1154(3)
C21	0.0740(2)	0.9122(1)	0.0000 (4)	3.55(7)	$C_{0} - C_{1} - C_{8}$	10.7 (7)		105 5 (2)
C22	0.6200 (2)	0.9010(2)	0.9901 (4)	3.55 (9)	$C_{3} = C_{8} = C_{7}$	104.8 (3)		103.3 (3)
C23	0.5699 (2)	0.9387 (2)	1.0202 (5)	4.42 (9)	C3—C8—C9	115.4 (3)	C1C15C16	110.5 (3)
C24	0.5205(2)	0.9244 (2)	1.1160 (6)	5.9(1)	C3C8C18	113.2 (3)	CI-C15-C17	110.8 (3)
C25	0 5217 (3)	0 8746 (2)	1 1842 (5)	66(1)	C7-C8-C9	102.4 (3)	C11-C15-C16	110.8 (3)
C25	0.5700 (3)	0 8372 (2)	1 1545 (6)	77(1)	C7-C8-C18	1137(3)	C11-C15-C17	116.3 (3)
C20	0.5709(3)	0.05/5(2)	1.15+5(0)	4 2 (1)	$C_{1} = C_{2} = C_{10}$	107.0 (2)	C16 C15 C17	103 0 (2)
C27	0.6203 (3)	0.8500 (2)	1.0562 (6)	0.3(1)		107.0 (3)		103.0 (3)
C31'	0.6116 (2)	1.2729 (2)	1.1824 (5)	5.2(1)	09	119.9 (3)	05	92.4 (3)
C32′	0.5521 (3)	1.2782 (3)	1.1137 (7)	8.2 (2)	09C9C10	120.2 (3)	02-C21-O21	123.3 (3)
C33'	0 4972 (3)	1,3063 (3)	1.1751 (8)	10.1 (2)	C8-C9-C10	119.3 (3)	O2-C21-C22	111.6 (3)
C2.4	0.4772(3)	1 2207 (2)	1 2021 (7)	07(2)		109 9 (3)	021 - C21 - C22	125 1 (3)
C34	0.5040(5)	1.3277 (3)	1.3021 (7)	7.7 (4) 11.5 (2)		110 9 (2)		1143(3)
C35′	0.5625 (4)	1.3259 (3)	1.3085 (8)	11.5 (2)		110.8 (3)		114.3 (3)
C36′	0.6178 (3)	1.2971 (3)	1.3132 (6)	9.2 (2)	C10-C11C12	118.7 (3)	C10-C11-C15	120.8 (3)
C41	0.5947 (2)	1.1031 (2)	0.6723 (6)	5.2 (1)	C12C11C15	119.7 (3)	C11—C12—C13	116.7 (3)
C42	0 5606 (2)	1 1358 (2)	0 7851 (7)	7000	C11C12C19	126.0 (3)	C13C12C19	117.3 (3)
051/	0.5000 (2)	1.1550 (2)	1 2020 (5)	50(1)	013 C13 C12	1120(3)	C3'-C31'-C32'	121 6 (5)
CDE	0.841/(2)	1.2404(2)	1.2737(3)	5.0(1)	010	116.7 (3)	05 - 051 - 052	121.0(3)

04-C41-O41	122.7 (4)	O10-C10	01—O101	123.0 (3)
O4-C41-C42	109.7 (4)	O10C10	01—C102	111.8 (3)
O41—C41—C42	127.6 (4)	0101—C1	01—C102	125.2 (4)
Cl'-013-Cl3-Cl2	-92.0 (4)	01'-C1'		-90.9 (5)
C1'-013-C13-C14	146.1 (3)	C2'-C3'-	—N4'—C5'	-100.1 (4)
C13-013-C1'-01'	15.2 (5)	C2'-C3'	-C31'-C32'	38.8 (6)
C13-013-C1'-C2'	-161.4 (3)	02'—C2'	-C3'-N4'	-63.0 (4)
013-C1'-C2'-O2'	-158.4 (3)	02'-C2'	-C3'-C31'	60.5 (4)
013-C1'-C2'-C3'	85.6 (4)	C3'—N4'		-2.9(6)
C1'-C2'-C3'-C31'	179.6 (3)	C3'—N4'		179.1 (4)
C1'-C2'-C3'-N4'	56.0 (4)	C31'-C3	'—N4'—C5'	135.3 (4)
01'-C1'-C2'-O2'	25.1 (6)	C32′—C3	1'—C3'—N4'	161.7 (4)
$D - H \cdots A$	<i>D</i> —Н	H <i>A</i>	$D \cdot \cdot \cdot A$	$D = H \cdot \cdot \cdot A$
01-H1'···07 ⁱ	1.003	1.851	2.801	156.9
07—H7'···O101	1.062	1.928	2.896	149.5
$N2' - H22' \cdots O1^{ii}$	0.957	2.131	2.991	148.9
$N2' - H21' \cdot \cdot \cdot O9^{iii}$	0.971	2.191	3.120	159.2
N4'—H4'···O21 ⁱⁱ	0.975	2.207	3.101	151.8
Symmetry codes: (i) x	;, y, 1+z; (ii)	$\frac{3}{2} - x, \frac{1}{2} + y, 2$	$-z$; (iii) $\frac{3}{2} - x$	$\frac{1}{2} + y, 1 - z.$

The structure was solved by direct methods using *SHELXS86* (Sheldrick, 1985) and refined by full-matrix least-squares techniques using *MoIEN* (Fair, 1990). The two hydroxyl H atoms in the molecule were located from difference Fourier maps and the positions of all the other H atoms were calculated from an idealized geometry with standard bond lengths and angles.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: CR1123). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Appendino, G., Gariboldi, P., Gabetta, B., Pace, R., Bombardelli, E. & Viterbo, D. (1992). J. Chem. Soc. Perkin Trans. 1, pp. 2925–2929.
- Dubois, J., Guénard, D., Gueritte-Voegelein, F., Guedira, N., Potier, P., Gillet, B. & Beloeil, J. C. (1993). Tetrahedron, 48, 6533-6544.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Gueritte-Voegelein, F., Guénard, D., Lavelle, F., Goff, M. T. L., Mangatal, L., Potier, P., Cesario, M. & Pascard, C. (1991). J. Med. Chem. 34, 992–998.
- Gueritte-Voegelein, F., Guénard, D., Mangatal, L., Potier, P., Guilhem, J., Cesario, M. & Pascard, C. (1990). Acta Cryst. C46, 781–784.
- Gunawardana, G. P., Premachandran, U., Burres, N. S., Whittern, D. N., Henry, R., Spanton, S. & McAlpine, J. B. (1992). J. Nat. Prod. 55, 1686–1689.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tenessee, USA.
- Motherwell, W. D. S. & Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.
- Peterson, J. R., Do, H. D. & Rogers, R. D. (1991). Pharm. Res. 8, 908–912.
- Rowinsky, E. K. & Donehower, I. C. (1991). Pharmacol. Ther. 52, 35–84.
- Sheldrick, G. M. (1985). SHELXS86. Crystallogrpahic Computing 3, edited by G. M. Sheldrick, C. Krüger & R. Goddard, pp. 175–189. Oxford Univ. Press.
- Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P. & McPhail, A. T. (1971). J. Am. Chem. Soc. 93, 2325–2327.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1995). C51, 298-301

2-Methyl-2H-1,2-benzisoselenazol-3-one

M. PIATEK, B. OLEKSYN AND J. SLIWINSKI

Department of Chemistry, Jagiellonian University, 30 060 Kraków, Ingardena 3, Poland

(Received 8 March 1993; accepted 25 January 1994)

Abstract

The nearly planar molecules of C_8H_7NOSe form chains parallel to [001] with Se…O intermolecular distances of 2.600 (3) Å. The shortest contacts [2.362 (5) Å] occur between the methyl group H atoms of the neighbouring chains.

Comment

Within the last few years selenium has been recognized as an essential component of several biologically important macromolecules (Stadtman, 1990), e.g. glutathione peroxidase (GSH-Px), the enzyme which catalyzes reduction of hydroperoxides in the human organism (Parnham & Graf, 1987). An important stage in the enzyme's catalytic cycle is the modification of the selenomethionine at its active centre (Ladenstein, Epp & Wendel, 1983). The antioxidant activity of GSH-Px can be mimicked by relatively simple seleno-organic compounds such as 2-methyl-2H-1,2-benzisoselenazol-3-one (MBS). The best known is ebselen, a 2-phenyl analogue of MBS, which was reported to elicit anti-inflammatory (Dupont, Dideberg & Jacquemin, 1990) and immuno-stimulating (Młochowski & Inglot, 1991) activities. The anti-inflammatory effects of ebselen were suggested to be connected with its stimulating influence on the arachidonic acid metabolism (Leyck & Parnham, 1990). This results in inhibition of 5lipoxygenase and isomerization of its product LTB₄ to a biologically inactive trans-LTB₄, as well as an inhibition of the generation of reactive oxygen species (Cotgreave, Johanson, Westergren, Moldeus & Brattsand, 1988). The nature of the likeness between the antioxidant activity of the selenoorganic compounds and GSH-Px is not yet understood.

A possible explanation might be a similarity between the amide N-atom surrounding of the Se atom in the active selenazoles and in GSH-Px (Wendel, Fausel, Safayhi, Tiegs & Otter, 1984).

Acta Crystallographica Section C ISSN 0108-2701 ©1995